Clinical Trials and Personalized Medicine

7/16/2016

Gregory M. Cote MD PhD
Outline

• Clinical trials
• Primer on basic cell biology and how that ties to cancer development
• *Personalized Medicine* and genetic testing
• Connecting patients to trials
Clinical Trials

- We need new therapies for chordoma
- Clinical trials are how we test new ways to treat chordoma
Drug Development and Clinical Trials
Drug Development and Clinical Trials

Phase I

Is it safe? What dose?
Standard Phase I “3+3” Design

Modified from Hansen et al 2014, LeTourneau 2009
Drug Development and Clinical Trials

Phase I
Is it safe? What dose?

Phase II

Any sign of activity?
New Drug A

Fixed number of patients (e.g. 30) with same type of cancer
Everyone gets the same dose and drug
No placebo
Looking to show drug is better than expected in what is typically seen in other patients
Drug Development and Clinical Trials

Phase I
- Is it safe? What dose?

Phase II
- Is it better?

Phase III

Any sign of activity?
New Drug A compared to a standard therapy or placebo
Drug Development and Clinical Trials

Discovery

Phase I

Phase II

Phase III

Time/Money: 10+ years
$1 billion
Drug Development and Clinical Trials

In all cancers – need to be smarter about matching patients to trials
Need to move on early if not showing a meaningful effect

Unique challenges for rare tumors
Basic cancer cell biology

PERSONALIZED MEDICINE
How does cancer develop?

30 thousand genes
30 trillion cells in the body
70 billion cell divisions per day
10 thousand to 1 million mistakes/injuries per cell per day
How does cancer develop?

- Resist cell programmed death
- Genome instability
- Activate invasion programs
- Uncontrolled growth
- Avoid immune surveillance
- Angiogenesis (blood vessel growth)
How we think about new ways to kill cancer cells:

- New Chemo
- Delivery Techniques
- Resist cell programmed death
- Uncontrolled growth
- Avoid immune surveillance
- Mutation-targeted therapies
- Immunotherapy
- Genome instability
- Activate invasion programs
- Angiogenesis (blood vessel growth)
- DNA repair inhibitors
- Angiogenesis Inhibitors
Genetic Testing Logistics
Genetic Testing Logistics

Commercial Testing

In general they cover a subset of known cancer genes
Vary in number of genes, ‘hot spots,’ clinical reporting, cost

Academic Testing

Many hospitals have their own:
MGH, DFCI, JH, MSKCC, etc
Built in to the NCI-Match trial

In general they cover a subset of known cancer genes
Vary in number of genes, ‘hot spots,’ clinical reporting, cost
Genetic Testing

ABL1	C11560 EMMP	GCR2	FGFR4	ELF4	MET	PHKCA	SQK40	TGK31
ABL2	C02015 DDCS	FGFR4	PHE	HHB4	hMTF	PHG4B	S7E02	LGH31
ACVR1B	CBPS	DNMT3A	FLN4	HNRPB	MLH1	PHG20	SF3B1	VEGF4
AKT1	C2L1	DOPL1	FML1	HNP2	MNK	SCH1	S7E21	VHL
AKT2	C2N014 EKFR	FTV3	HNF4	ME3A	MIR292	SH2D2	WIF1	
AKT3	C2N012	EP300	FLK4	JN22	MIR	MS44	SMAD2	WT1
ALK	C2N013	EMER	FOSL2	JAK1	MSF2	PHD2	SMAD4	XPO1
AKIR	C2N015	EPSS3	FOSL2	JAK1	MSF2	PHD2	SMAD4	XPO1
ARL1	C2N018	ERBB3	FOSL2	JAK2	MYD11	MPED	TAP1	ZEB12
ARK	C2P177	ERBB4	FOSL2	JAK2	MYD11	MPED	TAP1	ZNF103
ARF	C2P179	ERBB4	FOSL2	JAK2	MYD11	MPED	TAP1	ZNF103
ARAF	C2P179	ERBB4	FOSL2	JAK2	MYD11	MPED	TAP1	ZNF103
ARAF	C2P179	ERBB4	FOSL2	JAK2	MYD11	MPED	TAP1	ZNF103
ARAF	C2P179	ERBB4	FOSL2	JAK2	MYD11	MPED	TAP1	ZNF103
ARAF	C2P179	ERBB4	FOSL2	JAK2	MYD11	MPED	TAP1	ZNF103
ARAF	C2P179	ERBB4	FOSL2	JAK2	MYD11	MPED	TAP1	ZNF103
ARAF	C2P179	ERBB4	FOSL2	JAK2	MYD11	MPED	TAP1	ZNF103
ARAF	C2P179	ERBB4	FOSL2	JAK2	MYD11	MPED	TAP1	ZNF103
ARAF	C2P179	ERBB4	FOSL2	JAK2	MYD11	MPED	TAP1	ZNF103

SELECT REARRANGEMENTS

| ALK | EML4 | ERBB2 | ETV1 | ETV4 | ETF5 | KIT | MIC | NTRK1 | ROS1 | RET |
| BCR | BCR2 | ETV3 | ETV4 | GEPX | MIR3 | PAF1 | ROR1 | RET | RET |

MASSACHUSETTS GENERAL HOSPITAL CANCER CENTER
Genetic Testing Logistics

• *Should be only be sent when ready for a clinical trial*
Genetic Testing Logistics

- Many limitations:
 - High cost
 - Unlikely coverage by insurance (issues in particular with Medicaid)
 - Technology is evolving rapidly
 - Utility in chordoma remains unknown

- **Do not pay for this yourself**
Which trial is right for me?

- Chordoma subtype
- Chordoma rate of growth
- Prior therapies
- Visit schedule / distance traveled
- Other medical problems
- Insurance
Which trial is right for me?

Chordoma subtype specific

Conventional

Poorly Differentiated

1. ?Appropriate chemo given
2. Tazemetostat
Which trial is right for me?

Conventional

1. Open chordoma-specific trials:
 • Localized, RT candidate → vax/RT
 • Proton pencil beam study (?closed)
 • Nilotinib/RT (closed)
2. Genetic targets → Phase 1 (or 2) or basket
3. Novel Phase 1 Agents
4. Off-label
Finding new therapies for chordoma
THANK YOU