Leading the Search for a Cure

AGENDA
• Background
• Research Strategy
• Research Progress
• Next Steps
OUR MISSION

To improve the lives of those affected by chordoma and lead the search for a cure

THE PROBLEM

Chordoma is poorly controlled with current treatments

- Disease-free: 40%
- Stable local disease: 11%
- Progressive local disease: 6%
- Stable metastatic disease: 11%
- Progressive metastatic disease: 32%

THE PROBLEM

Patients experience a multitude of health effects that diminish quality of life

- Chronic pain
- Depression or severe anxiety
- Difficulty walking
- Chronic fatigue
- Difficulty sleeping
- Balance impairment
- Double vision
- Limited mobility
- Sexual dysfunction
- Hearing loss
- Chronic sinus problems
- Urinary incontinence
- Urinary retention
- Bowel obstruction
- Fecal incontinence
- Speech impediment
- Other vision problems
WHAT PATIENTS NEED

• Treatments that:
 – Improve quality of life
 – Reduce recurrence
 – Stop progression
 – Cure the disease

AGENDA

• Background
• Research Strategy
• Research Progress
• Next Steps

PATH TO BETTER TREATMENTS

1. Repurposing existing therapies
 • There are over 150 cancer drugs already on the market, and over 1,000 more in development
 • Different types of cancer often share common underlying biology, making them susceptible to the same treatments
 • The majority of cancer treatments are approved for more than one type of cancer

2. Discovering new therapies
PATH TO BETTER TREATMENTS

1. Repurposing existing therapies
 - Both paths depend on understanding the biology of the disease
 - Then, scientists can come up with ideas for how to treat it
 - Those ideas could point to existing therapies or new therapies that need to be developed

2. Discovering new therapies

OUR RESEARCH STRATEGY

- We lead the search for a cure by advancing a comprehensive research roadmap that spans every stage of the treatment development process
- Within each stage, we set goals and develop plans with guidance from our Scientific and Medical Advisory Boards
OUR RESEARCH STRATEGY

Proactively Drive Research

Streamline the Research Process

Our Research Strategy:

- We lead the search for a cure by advancing a comprehensive research roadmap that spans every stage of the treatment development process.
- Within each stage, we set goals and develop plans with guidance from our Scientific and Medical Advisory Boards.
- Progress is regularly measured and evaluated.
- Plans are continually updated as discoveries are made and new needs and opportunities arise.

Scientific Advisory Board
- David Drewry, PhD
 University of North Carolina
- Adrienne Flanagan, MD, PhD
 University College London
- Fran Hornicek, MD, PhD
 Massachusetts General Hospital
- Michael Kelley, MD
 Duke University
- Paul Melzner, MD, PhD
 National Cancer Institute
- Deric Park, MD
 National Cancer Institute

Medical Advisory Board
- Tom Delaney, MD
 Massachusetts General Hospital
- Hans Gelderblom, MD, PhD
 Leiden University Medical Center (Netherlands)
- John Kelley, MD
 Johns Hopkins
- Mitali Gaurav, MD
 Memorial Sloan Kettering
- Chris Henry, MD
 Memorial Sloan Kettering
- Fran Hornicek, MD, PhD
 Massachusetts General Hospital
- Shreya Patel, MD
 MD Anderson
- Chandra Sen, MD
 New York University
- Silvia Stacchiotti, MD
 Instituto di Caringi, Milan (Italy)
- Katie Thornton, MD
 Johns Hopkins
- Josh Y赞美, MD
 Memorial Sloan Kettering

12/7/15
AGENDA
• Background
• Research Strategy
• Research Progress
• Next Steps

STREAMLINING RESEARCH

NETWORK DEVELOPMENT
• Proactively recruit researchers into the field
• Hosted 4 international research conferences
• Built a network of over 300 researchers worldwide
CENTRALIZED REPOSITORIES

We supply researchers with easy access to critical scientific resources through centralized repositories of:

- Tumor Tissue
- Cell Lines
- Mouse Models

DRIVING RESEARCH
RESOURCE DEVELOPMENT

- **Key resources**
 - Cell Lines
 - Tumorgraft Mouse Models
 - Genetically Engineered Mouse Models

<table>
<thead>
<tr>
<th>Year</th>
<th>2007</th>
<th>Goal</th>
<th>Current</th>
<th>In Dev't</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Lines</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>Tumorgraft Mouse Models</td>
<td>0</td>
<td>10</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Genetically Engineered Mouse Models</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Strategy

- Grants
- Prizes
- Contract Research
- Independent Validation

TARGET DISCOVERY

- **Key goals**
 - Discover molecular drivers
 - Uncover vulnerabilities
 - Identify unique characteristics

Strategy

- Grants awarded to:
 - Broad Institute of Harvard and MIT (2)
 - Johns Hopkins University (3)
 - Maastricht University, Netherlands
 - Massachusetts General Hospital (3)
 - Memorial Sloan Kettering (3)
 - Sanger Institute, UK

TARGET DISCOVERY

- **Approaches** (partial list)
 - Genome sequencing
 - Epigenomic analysis
 - Proteomic analysis
 - Loss of function screens
 - Chemical screens
 - Super-enhancer analysis
 - Antigen profiling

<table>
<thead>
<tr>
<th>Approaches</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete</td>
<td></td>
</tr>
<tr>
<td>Ongoing</td>
<td></td>
</tr>
<tr>
<td>Ongoing</td>
<td></td>
</tr>
<tr>
<td>Ongoing</td>
<td></td>
</tr>
<tr>
<td>Planned</td>
<td></td>
</tr>
</tbody>
</table>
TARGET DISCOVERY

• Targets discovered

Therapies Exist (partial list)
- CDKs
- EGFR
- L-MAK
- FGFR
- HDAC
- Hypoxia
- mTOR
- PDL/PD1
- PI3K
- SWI/SNF

New Therapy Required
- Brachyury
 - 97% of chordoma patients have inherited SNP in brachyury
 - Inherited extra copy of brachyury causes familial chordoma
 - Activated in all chordomas
 - Essential for chordoma cell survival

TARGET DISCOVERY

• Targeting brachyury
 - Determine how brachyury drives chordoma
 - What turns it on?
 - What other factors does it require to operate?
 - What genes does it activate?
 - What genes does it suppress?
 - How does the chordoma-associated SNP affect brachyury function?

Strategy
- Seed grant awarded to University of Toronto
- Additional investments needed
 - Pending funding commitment

THERAPEUTIC DISCOVERY

• Key goals
 - Discover therapies that directly or indirectly block brachyury

Strategy
- Seed grant awarded to MGH (Sept ’15)
- Additional investments needed
 - Pending funding commitment
PRECLINICAL RESEARCH

Key goals
- Test all approved drugs and libraries of experimental therapies in chordoma cell lines
- Test promising therapies in mouse models

Strategy

- **Grants and Partnerships**
 - Tested all FDA-approved drugs in chordoma cell lines, identified ~20 promising drugs
 - Tested 15 promising drugs in mouse models
 - Identified several drugs that inhibit tumor growth in mice

CF Drug Screening Pipeline
- A centralized drug screening service offered to the entire research community
- Enables fast and efficient evaluation of promising drugs proposed by researchers, companies or SAB
- Reduces cost by 40-50%
- Reduces time by 60-70%
 - Eliminates 12-18 months of start-up time
 - Eliminates 12-24 years of publication delay

<table>
<thead>
<tr>
<th>Start-up</th>
<th>1 year</th>
<th>2 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Lab</td>
<td>Drug Screening Pipeline</td>
<td>Publication Delay</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Negative</th>
<th>Enolimb</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1000</td>
</tr>
<tr>
<td>1000</td>
<td>1500</td>
</tr>
<tr>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>60</td>
<td>90</td>
</tr>
</tbody>
</table>

12/7/15
PRECLINICAL RESEARCH

• CF Drug Screening Pipeline
 – Experiments with first 5 drugs started in Sept ’15
 – 10 more drugs vetted
 – Next 5 will start in Q1 ’16
 – Capacity to test ~15 drugs per year (requires $400K)

CLINICAL RESEARCH

• Key goals
 – Launch 10 clinical trials by 2020
 – Create patient registry to systematically track patient outcomes

Clinical Trials Strategy

• Carefully vet and prioritize trials with MAB and SAB
• Provide MAB and patient input on trial design
• Assist in trial site initiation
• Provide grants for non-drug costs
• Educate and notify patients and physicians

CLINICAL RESEARCH

• Progress
 ✓ Started phase 2 trial of brachyury yeast vaccine at National Cancer Institute in April ’15
 ✓ Prioritized new trial concepts in July ’16
 • MAB and SAB reviewed 18 concepts
 • Identified 3 with potential clinical value
SUMMARY OF RESEARCH INVESTMENTS

- Invested $4M in research
- Funded 25 research grants
 - Broad Institute, Duke, Istituto dei Tumori, Johns Hopkins, Mass General, Memorial Sloan Kettering, University College London, University of Florida, University of Maastricht (Netherlands), etc.
- Initiated >90 research partnerships leveraging millions of external research dollars

DISCOVERIES PUBLISHED IN PEER REVIEWED PUBLICATIONS

<table>
<thead>
<tr>
<th>Therapeutic Target</th>
<th>Molecular Evidence</th>
<th>Preclinical Evidence</th>
<th>Clinical Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brachyury</td>
<td>yes</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>c-MET</td>
<td>yes</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>FGFR</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>HIF-1a</td>
<td>yes</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>JAK/STAT</td>
<td>yes</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>MAPK</td>
<td>yes</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>PDGER</td>
<td>yes</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>POL/POLL</td>
<td>yes</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>PI3K/Akt-mTOR</td>
<td>yes</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>STAT</td>
<td>yes</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>SWI/SNF</td>
<td>yes</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>VEGF</td>
<td>yes</td>
<td>yes</td>
<td></td>
</tr>
</tbody>
</table>
AGENDA

- Background
- Research Strategy
- Research Progress
- Next Steps

2016 RESEARCH PRIORITIES

- Continue developing, validating and distributing preclinical models - $200K
- Invest in projects to (i) understand brachyury’s role in chordoma and (ii) discover new targets for immune therapy - $400K
- Invest in projects to identify ways to target brachyury - $250K
- Test 15 drugs in Drug Screening Pipeline - $400K
- Initiate and support three clinical trials - $600K

Total - $1.85M

Questions?