Whole genome analysis of chordoma

4th International Research Workshop

Stephen Yip, M.D., Ph.D., FRCP

BC Cancer Agency
Vancouver General Hospital

21 March 2013
Acknowledgements

- David Huntsman
- Torsten Nielsen
- Farzad Jamshidi
- Leah Prentice
- Sohrab Shah
- Karey Shumansky
- Mt Sinai Hospital – Toronto
- UCSF (Joanna Phillips)
- Mayo Clinic
- MGH

Chordoma Foundation
Forme Fruste Tumour Profiling

- TFRI/CIHR
- David Huntsman

“Clinically and pathologically homogenous tumour types, presumed to be driven by a limited number of genetic events”

- FOXL2
 Granulosa Cell Tumour of the Ovary

- ARID1A
 Endometriosis associated Ovarian Ca

- DICER1
 Sex cord stromal tumour

- CIC
 Oligodendroglioma

- Chordoma, Epithelial sarcoma, GI carcinoids
Update on BCCA sequencing of chordoma specimens

<table>
<thead>
<tr>
<th></th>
<th>Whole Transcriptome Sequencing</th>
<th>Exome Sequencing</th>
<th>Whole Genome Sequencing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SNP 6.0</td>
<td>SNV</td>
<td>INDEL</td>
</tr>
<tr>
<td>1T</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>1N</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>2T</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>2N</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>3T</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>4T</td>
<td>Y</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>4N</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>5T</td>
<td>Y</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>5N</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>6T</td>
<td>Y</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>6N</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>7T</td>
<td>Y</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>7N</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>8T</td>
<td>Y</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>8N</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Farzad Jamshidi
“Holy Trinities”

- WGSS - Tumour
- WGSS - Normal
- WTSS - Tumour
Metrics of WGSS

Tumour coverage = 60X
Normal coverage = 30X

• Single Nucleotide Variants
• Copy Number Variants
• Fusion/Translocations
Somatic SNVs in matched T/N pairs

<table>
<thead>
<tr>
<th>Sample ID</th>
<th># non-synonymous variants in coding region (>0.8)</th>
<th>INDELS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DG1021</td>
<td>35</td>
<td>243</td>
</tr>
<tr>
<td>DG1010</td>
<td>21</td>
<td>278</td>
</tr>
<tr>
<td>DAH466</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>DAH471</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>DAH472</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>DAH891</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

Classifier Probability score >0.8
APOLLOH is a hidden Markov model (HMM) for predicting somatic loss of heterozygosity and allelic imbalance in whole tumour genome sequencing data.

Model Features
- **SC** = Spatial Correlation
- **CN** = Copy Number Aware
- **SP** = Stromal Parameter

Modified Figure 2. Ha et al., Genome Res 2012.
deFuse: An Algorithm for Gene Fusion Discovery in Tumor RNA-Seq Data

Andrew McPherson¹,², Fereydoun Hormozdiari², Abdalnasser Zayed¹, Ryan Giuliani¹, Gavin Ha¹, Mark G. F. Sun¹, Malachi Griffith³, Alireza Heravi Moussavi¹, Janine Senz¹, Nataliya Melnyk¹, Marina Pacheco⁴, Marco A. Marra³, Martin Hirst³, Torsten O. Nielsen⁴, S. Cenk Sahinalp², David Huntsman¹,⁴, Sohrab P. Shah¹,⁴,⁵⁺

¹Centre for Translational and Applied Genomics, BC Cancer Agency, Vancouver, British Columbia, Canada, ²School of Computing Science, Simon Fraser University, Burnaby, British Columbia, Canada, ³Canada’s Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada, ⁴Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada, ⁵Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada

Feature-based classifiers for somatic mutation detection in tumour–normal paired sequencing data

Jiarui Ding¹,², Ali Bashashati¹, Andrew Roth¹, Arusha Oloumi¹, Kane Tse³, Thomas Zeng³, Gholamreza Haffari¹, Martin Hirst³, Marco A. Marra³, Anne Condon², Samuel Aparicio¹,⁴ and Sohrab P. Shah¹,²,⁴,⁺

¹Department of Molecular Oncology, BC Cancer Agency, ²Department of Computer Science, University of British Columbia, ³Canada’s Michael Smith Genome Sciences Centre and ⁴Department of Pathology, University of British Columbia, Vancouver, BC, Canada

Associate Editor: Alex Bateman
MeDIP/MRE- Sequencing

40440 – WTSS/Exome/MeDIP/MRE
Profiling of chordoma methylome and correlation with gene expression

Martin Hirst
Summary

- Tumours with homogenous histology/clinical behaviour may be driven by limited number of genetic events
- Completion of 5 matched pairs of chordoma exomes
- Completion of 2 sets of chordoma “holy trinities”
- Ongoing methylome analysis
 - Relatively small number of somatic mutations
 - No recurrent mutations identified in 5 matched exomes
 - WGSS revealed numerous fusion events